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Abstract. We consider an interaction between superconformal fields of the same gradation.
This entails the construction of a supersymmetric Poisson tensor for these fields, generating
a new class of Hamiltonian systems. The Lax representation is found for one of them by
supersymmetrizing the Lax operator for the Hirota–Satsuma equation. The supersymmetric
equation is not reducible to the classical Hirota–Satsuma case. We show that our generalized
system can be reduced to the the supersymmetric KdV equation (a = 4). Surprisingly the
integrals of motion are not reduced to integrals of motion of the supersymmetric KdV equation.

1. Introduction

The Korteweg–de Vries (KdV) equation, which has been extensively studied by
mathematicians as well as physicists [1] in the last 30 years, is probably the most popular
soliton equation. It bears a deep relation to conformal field theory [2], two-dimensional
gravity and matrix models [3].

In this context Gervais [4] discovered that the KdV hierarchies are related, via the
second Hamiltonian structure, to Virasoro algebra. This observation has also been extended
to other Lie algebras. For example, the nonlinear Schrödinger equation is connected with
the SL(2, C) Kac–Moody algebra [5], the Boussinesq equation is connected with the so
calledW3 algebra [6].

On the other hand, various different generalizations of the soliton equation have
recently been proposed as the Kadomtsev–Petviashvilli and Gelfand–Diki hierarchies and
supersymmetrization. The motivation for studying these are diverse. In the supersymmetric
generalization, one expects that, in the so called bosonic limit of supersymmetry (SUSY),
a new class of the integrable models may appear. Until now supersymmetric KdV
hierarchies [7–16] have been constructed forN = 1, 2, 3 and 4, based on their relation
to superconformal algebras. For an extendedN = 2 supersymmetric route the Boussinesq
[17, 18], nonlinear Schrödinger equation [5, 19–21] and the multicomponent Kodomtsev–
Petviashvilli hierarchy [22] have been supersymmetrized as well.

It appears that in order to get a supersymmetric SUSY theory, we have to extend a
system ofk bosonic equations bykN fermion andk(N−1) boson fields(k = 1, 2, . . . , N =
1, 2, . . .) in such a way that the final theory becomes SUSY invariant. Interestingly enough,
during supersymmetrizations, some typical SUSY effects (compared with classical theory)
have occured. We mention a few of them: the nonuniqueness of the roots for the SUSY
Lax operator [15], the lack of the bosonic reduction to classical equations (for example in
the SUSY Boussinesq equation [17]) and the occurence of nonlocal conservation laws [23].
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In this paper we investigate how it is possible to build the Hamiltonian operator (Poisson
tensor) and an integrable system by using two interacting (super)conformal fields. It is
possible to carry out such a construction for a (SUSY) Boussinesq equation in which
case, we have two conformal fields with different conformal dimensions. However, we
are interested in the construction employing two different fields of the same conformal
dimension.

Initially, we shall study the classical aspect of our problem, without any reference to
SUSY and then we shall consider the supersymmetrizations.

In the ‘classical’ section we show that it is possible to construct several different Poisson
tensors by using two conformal fields of the same dimension. We carry out this construction
by assuming that in the limiting case, when the second field vanishes, our Poisson tensor
reduces to the tensor that is connected with the Virasoro algebra and hence reproduces the
Korteweg–de Vries equation. Among those different Poisson tensors, there is a tensor which
could be used to construct the Hirota–Satsuma equation [24]. This equation is a nontrivial
extension of the Korteweg–de Vries equation which is integrable, has the Lax operator [25]
and the recursion operator [26]. Moreover, in the limiting case of a pure KdV equation
(when the second field vanishes), integrability is preserved, and the Lax operator is reduced
to the KdV counterpart.

In the supersymmetric case, presented in section 2, we have a much more complicated
situation compared with the classical one. First, we carry out a classification of all possible
supersymmetric Poisson tensors constructed of two superconformal fields of the same
dimensions. For this purpose we use a symbolic computer language, Reduce [27] and
the computer package SUSY2 [28]. By analogy with the classical case, we assume these
tensors to be reducible to tensors connected with theN = 2 super Virasoro algebra and
hence to those which reproduce SUSY generalizations of the KdV equation. The SUSY
(N = 2) extension of the KdV equation leads to a class of equations containing one free
parameter, however, only three members of this class (a = 1, 4,−2) are integrable and
possess Lax pairs. Therefore, again using the computer package SUSY2, we investigate
the Lax operator. We assume the most general form on the Lax operator, which reduces
to known Lax operators of the SUSY KdV equations. We show that it only reproduces a
consistent equation, for a system which is reduced to the SUSY KdV (a = 4) equation.
Finally we present three nontrivial Hamiltonians for our system.

As a result, in the bosonic limit of our system, we obtain a complicated system of four
interacting classical fields. Surprisingly, these equations are not reduced to the classical
Hirota–Satsuma equation. This situation seems to be generic because, as mentioned earlier,
we encounter the same situation for the super extension of the Boussinesq equation—the
lack of the proper bosonic limit. There is also a second aspect of our supersymmetrization:
namely, conservations laws of our super system do not coincide, in the limit of the pure
SUSY KdV equation, with the conservations laws of SUSY KdV (a = 4) equation. We
prove that by showing the absence of the second, fourth and sixth conformal dimensional
integrals of motions in our generalization. Note that this supersymmetrization of the Hirota–
Satsuma equation is integrable due to the existence of the Lax operator.

2. Classical Poisson tensor and Hirota–Satsuma equation

Let us start our consideration with the well known KdV equation

ut = −uxxx + 6uux (1)
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which can be viewed as a Hamiltonin system

ut = {u,H } (2)

with the Hamiltonian and the Poisson brackets defined by

H = 1
2

∫
u2 dx (3)

{u(x), u(y)} = (−∂3+ 2u∂ + 2∂u)δ(x − y). (4)

For later use, let us rewrite this equation in an equivalent form by using the Poisson tensor

P2 = −∂3+ 2u∂ + 2∂u (5)

ut = P2 grad(H) (6)

where grad denotes the functional gradient.
For the Fourier modes ofu(x),

u(x) = 6

c

∞∑
n=−∞

exp(−inx)Ln − 1

4
(7)

the Poisson brackets in equation (4) imply the structure relations of the Virasoro algebra

[Ln,Lm] = (n−m)Ln+m + cn(n2− 1)δn,m (8)

wherec is a central extension term.
It is well known that this equation is completely integrable with an infinite number

of integrals of motion in involution. An interesting problem in the theory of solitons
is to generalize the KdV equation to a system of equations, in such a way, that the
integrability is preserved and in the limiting case, where additional fields vanish, we recover
the KdV equation. At the moment, there are many distinct proposals, one of them uses a
Poisson tensor constructed of two different conformal fieldsu andw of the same conformal
dimension. Taking into account that the fieldu is two dimensional, while the usual Poisson
tensor of KdV equation is three dimensional, we make the following ansatz

P2 =
(

c1∂
3
x + z1k d(u) c2∂

3
x + z2k d(u)+ z3k d(w)

c2∂
3
x + z2k d(u)+ z3k d(w) c3∂

3
x + z4k d(u)+ z5k d(w)

)
(9)

wherec1, . . . z1, . . . are (at the moment) free coefficients and

k d(u) = u∂x + ∂xu. (10)

In order to obtain the conditions on coefficientsci andzi we verify the Jacobi identity [29]

〈a, P ′[Pb]c〉 + cyclic permutation of(a, b, c) = 0 (11)

where a, b, c are arbitrary elements of the real-linear spaceS [29], while 〈〉 is a scalar
product inS, P ′[Pb] denotes the directional derivative inS and is defined as follows

P(u)′[Pb] = ∂

∂ε
P (u+ ε[Pb])|ε=0. (12)

We obtain three different solutions for the coefficientsci andzi :

z2 = z3 = z4 = c2 = 0 (13)

z3 = 0 z5 = z2
2 − z1z4

z2
c1 = c2z1

z2
(14)

z2 = 0 z1 = z3 c3 = c1z4+ c2z5

z3
. (15)
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The first solution give us the direct product of two standard Virasoro structures (equation (5))
with arbitrary central chargesc1 andc3. We can apply this Poisson tensor to the gradient

H = 1
2

∫
uw dx (16)

and obtain the equation considered in [30] in the context of the extended supersymmetric
(N = 3) KdV system.

The second solution is not interesting from our point of view, because it is impossible
to reduce this tensor to the standard Virasoro-type Poisson tensor in the usual manner. In
order to show that, let us briefly explain the standard Dirac reduction formula [6].

Let U,V be two linear spaces with coordinatesu andv. Let

P(u, v) =
(
Puu, Puv
Pvu, Pvv

)
(17)

be a Poisson tensor onU
⊕
V . Assume thatPvv is invertible, then

P = Puu − PuvP−1
vv Pvu (18)

is a Poisson tensor onU .
As we see, for the second solution in space wherew = 0 the reduction is possible if

c2 = 0 andz2 = 0, but then, we obtain an undefined central extension term. However, it is
interesting to note that we can carry out the reduction in a different way. We can deform
this self-consistent structure:

w→ z2w
c2

z2
→ k c2→ 0 z2→ 0 (19)

and obtain the desired result. On the other hand it is possible to make a reduction in space
whereu = 0 by assuming thatc2 = 0 and obtaining the standard Virasoro-type tensor for
the fieldw.

The third solution (15) is the most interesting, since it allows us to make a reduction
in the space wherew = 0 assuming thatc2 = 0. This class of Poisson tensors includes the
Hamiltonian operator responsible for the Hirota–Satsuma equation, which has the form

P2 =
(
∂3+ ∂u+ u∂ ∂w + w∂
∂w + w∂ 2∂3+ 2∂u+ 2u∂

)
. (20)

We see that the interaction is concentrated both on the diagonal and off-diagonal
elements of the Poisson tensor (19). Therefore we can state that we have constructed
an extended Virasoro algebra which contains the usual conformal algebra interacting with
an additional conformal field.

The Hamiltonian and equations of motion for the Hirota–Satsuma system are

H = 1
2

∫
dx (u2− w2) (21)

ut = uxxx + 3uux − 3wwx (22)

wt = −2wxxx − 3uwx. (23)

Hirota and Satsuma found [24] five nontrivial integrals of motion and later it was proved
that this equation is integrable, due to the existence of its Lax representations [25]

L = (∂2+ u+ w)(∂2+ u− w) (24)

Lt = [L, (L
3
4 )+] (25)

where(+) denotes a projection onto the pure differential part of the operator.



Interacting superconformal fields 7939

3. The extended supersymmetrization of a Poisson tensor constructed of two fields

The basic objects in the supersymmetric analysis are: the superfield and the supersymmetric
derivative. We shall deal with the so called extendedN = 2 supersymmetry for which
superfields are superfermions or superbosons. They depend, in addition tox and t , on two
anticommuting variables,θ1 andθ2, (θ2θ1 = −θ1θ2, θ2

1 = θ2
2 = 0). Their Taylor expansion

with respect toθ is

U(x, θ1, θ2) = u0(x)+ θ1ζ1(x)+ θ2ζ2(x)+ θ2θ1u1(x) (26)

where the fieldsu0, u1, are interpreted as the boson (fermion) fields for superboson
(superfermion) field andζ1, ζ2, as fermions (bosons) for superboson (superfermion)
respectively. The superderivatives are defined as

D1 = ∂θ1 + θ1∂ D2 = ∂θ2 + θ2∂ (27)

with the properties

D2D1+D1D2 = 0 D2
1 = D2

2 = ∂. (28)

Below we shall use the following notation:(DiF ) denotes the outcome of the action of the
superderivative on the superfield, whileDiF denotes the action itself.

The supersymmetric Poisson tensor connected with Virasora algebra has the form

P = cD1D2∂ + zs(U) (29)

s(U) = 2∂U + 2U∂ −D1UD1−D2UD2 (30)

wherec is the central extension term andz an arbitrary free parameter.We assume that in
the SUSY case, the analogue of formula (9) reads

P2 =
(

c1D1D2∂ + z1s(U) c2D1D2∂ + z2s(U)+ z3s(W)

c2D1D2∂ + z2s(U)+ z3s(W) c3D1D2∂ + z4s(U)+ z5s(W)

)
. (31)

We checked the Jacobi identity by using the same formula as in the classical case and
obtained the same conditions on the central extension termsci andzi . For the same reasons,
as in the classical case, we consider the last solution only, assuming additionally thatc2 = 0.

It is easy to obtain a Hamiltonian system using the supersymmetric analogue of formula
(6). In order to do that we should specify the Hamiltonian. We assume its most general form
which has gradation three. Such a Hamiltonian is constructed of all possible combinations
of two fields and their (SUSY) derivatives. It is defined by modulo (SUSY) divergent terms
and has the following form

H =
∫

dx dθ1 dθ2 (a1(D1D2U)U + a2(D1D2U)W

+a3(D1D2W)W + a4W
3+ a5W

2U + a6WU
2+ a7U

3+ a8WxU) (32)

where ai are arbitrary coefficients, a superbosonU is defined by equation (25) while a
superbosonW is

W = w0+ θ1ξ1+ θ2ξ2+ θ2θ1w1 (33)

whereξi are the fermion-valued functions andwi are classical functions. Integration over
θ in (32) is understood by the Berezin integration∫

θj dθ1 = δij
∫
θi = 0. (34)

In this manner it is possible to obtain a huge class of complicated Hamiltonian systems
which contain many free parameters. It is easy to extract those systems of equations in
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which the bosonic limits are reduced to the Hirota–Satsuma equation. Indeed, assuming
that

z1= 1
2 z2= z5= c2= 0 z3= z4= 1 c1= −1 c3= −2 (35)

and choosing

H =
∫

dx dθ1 dθ2
1
2((D1D2U)U − (D1D2W)W + aU3) (36)

wherea is an arbitrary constant, we obtain the minimal SUSY generalization of the Hirota–
Satsuma equation which also contains the SUSY generalization of the KdV equation

Ut = ∂[Uxx + (D1U)(D2U)(3a + 1
2)+ (D1D2U)U(1− 3a)

+ 3
2aU

3− 2(D1D2W)W − (D2W)(D1W)] (37)

Wt = ∂[−2Wxx + 2W(D1D2U)− 2U(D1D2W)+ 3aW 2U ]

−(D2W)(D1Ux)− (D2Wx)(D1U)+ (D1Wx)(D2U)− (D1W)(D2Ux). (38)

4. The strategy and results

We have seen in the previous section that it is possible to obtain a new class of Hamiltonian
systems. We would like to find, in this class, an integrable system which contains the
Hirota–Satsuma equation in the bosonic limit. Therefore we apply the following strategy
in order to solve our problem:

(1) we assume the equations of motion on the superbosonsU andW are of the form
which is obtained by application of the Poisson tensor (31), with the conditions (15) and
c2 = 0, to the gradient of Hamiltonian (32).

(2) We construct the most general SUSY generalization of the ‘classical’ Lax operator
appearing in the Hirota–Satsuma equations (22), (23) and investigate a supersymmetric
generalization of its Lax pair (24).

(3) We use the equations of motion constructed in the first approach to verify the validity
of the Lax pair obtained in the second approach. In this manner we obtain the system of
algebraic equations on the free parameters which appear in the Lax operator, as well as in
the equations of motion and in the Poisson tensor. We would like to solve this system of
equations.

Before presenting the results of our computations let us briefly recall some basic facts on
SUSYN = 2 generalizations of the KdV equation which are needed for this construction.
This generalization can be written as

Ut = P grad

(
1

2
U(D1D2U)+ a

3
U3

)
= ∂(−Uxx + (2+ a)U(D1D2U)+ (a − 2)(D1U)(D2U)+ aU3) (39)

whereP is defined by (29) anda is an arbitrary parameter. It appears that this SUSY
generalization is only integrable for three values of parametersa. The integrability can be
concluded from the observation that it is possible to find Lax operators [10, 16] for these
cases.

The Lax operator in the supersymmetric case is an element of the super pseudo-
differential algebraG whose each elementg can be represented as:

G 3 g =
∞∑

n=−∞
8n∂

n =
∞∑

n=−∞
(Bn + FnD1+ FFnD2+ BBnD1D2)∂

n (40)
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whereBi andBBi are arbitrary superbosons whileFi andFFi are arbitrary superfermions.
In our case of SUSY KdV generalization, the Lax operators are given by:

a = −2 : L = ∂2+D1UD2−D2UD1 (41)

a = 4 : L = ∂2− (D1D2U)− U2+ (D2U)D1− (D1U)D2− 2UD1D2

= − (D1D2+ U)2 (42)

a = 1 : L = ∂ − ∂−1D1D2U. (43)

For the first two cases we have the usual Lax pair [10]

∂L

∂t
= 4[L,L

3
2+] (44)

while for the last case we have the nonstandard Lax pair [16]

∂L

∂t
= [L,L3

61] (45)

whereL3
61 denotes the projection on the subspace

P61(0) =
∞∑
n=1

8n∂
n + (F0D1+ FF0D2+ BB0D1D2). (46)

We shall not consider, the nonstandard representation below, as it does not exist for the
classical Hirota–Satsuma system.

We have odd and even dimensional integrals of motion for thea = 4 case. Odd integrals
contains the usual conservation laws of the KdV equation, while even integrals do not have
such a property. Explicitly, we have the first four integrals of motion fora = 4

I1 =
∫
U dx dθ1 dθ2 (47)

I2 =
∫
U2 dx dθ1 dθ2 (48)

I3 =
∫
((D1D2U)U + 4

3U
3) dx dθ1 dθ2 (49)

I4 =
∫
(U2

x + 3(D1D2U)U
2+ 2U4) dx dθ1 dθ2. (50)

These integrals can be computed by using the following formulae

I2k+1 =
∫

TrL2k+1
1 dx dθ1 dθ2 (51)

I2k =
∫

Tr(L1L2)
k dx dθ1 dθ2 (52)

where Tr denotes trace formula defined on the SUSY pseudo-diferential algebraG. We
adopt a definition of Tr such as that which denotes the element standing beforeD1D2∂

−1 in
the algebraG. L1 andL2 are two different roots of the Lax operator (equation (42)) where
L1 has the standard form as∂ + · · ·, andL2 is D1D2+ U .

In order to construct a Lax operator for our generalization we assumed that it has the
following reprsentation

L = ∂4+81∂
3+82∂

2+83∂ +84 (53)

where8i are SUSY operators ofith conformal dimension constructed of all possible
combinations ofD1,D2,D1D2, U,W , (SUSY) derivatives ofU,W and with free
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parameters. It is a huge expression which contains 243 terms (in other words 243 free
parameters). We make two additional assumptions: first: in the limitW = 0 we should
recover Lax operator for the SUSY KdV equation in the form of equation (41) or (42).
Second: our ansatz should be O(2) invariant under the change of the supersymmetric
derivatives(D1 7→ −D2,D2 7→ D1). This invariance follows from a physical assumption
on the nonprivileging of the ‘fermionic’ coordinates in the superspace.

These assumptions simplify our ansatz on the Lax operator giving 208 terms for the
a = 4 case, but only 195 terms for thea = −2 case. After making these simplifications we
are able to achieve the third point in our strategy. It appears that only for thea = 4 case
can we solve our consistency conditions and can only obtain one nontrivial solution. Our
systems of equation can be written as

d

dt

(
U

W

)
= P2 ∗ grad((D1D2U)U + 4

3U
3+ (D1D2W)W − 2W 2U) (54)

where

P2 =
(
D1D2∂ + s(U) s(W)

s(W) D1D2∂ + s(U)
)

(55)

ands(U), s(W) are defined by (30).
Explicitly we obtain

Ut = ∂[−Uxx + 3(D1U)(D2U)+ 6(D1D2U)U + 4U3+ 3(D2W)(D1W)− 6W 2U ] (56)

Wt = ∂[−Wxx − 2W 3+ 3(D2W)(D1U)− 3(D1W)(D2U)]

−6(D2W)(D2U)U − 6(D1W)(D1U)U. (57)

In the bosonic sector we obtain

u0t = ∂[−u0xx + 6u1u0+ 4u3
0− 6w0u0] (58)

w0t = ∂[−w0xx − 2w3
0] (59)

u1t = ∂[−u1xx + 3u2
1+ 3w2

1 + 3w2
0x − 3u2

0x − 6u0xxu0+ 12u1u
2
0− 6w2

0u1− 12w1w0u0]

(60)

w1t = ∂[−w1xx + 6w0xu0x + 6w1u1− 6w1w
2
0] + 12w1u0u0x − 12w0xu1u0. (61)

Interestingly, our Lax operator has a simple representation

L := [(D1D2+ U +W)(D1D2+ U −W)]2. (62)

This form of Lax operator suggests that we consider a much simpler Lax pair. Namely, it
is sufficient to investigate the root of this Lax operator

L = (D1D2+ U +W)(D1D2+ U −W) (63)

with the corresponding Lax pair

dL

dt
= −4i[L, (L

3
2 )+]. (64)

If we further reduce the bosonic limit of our system of equations, by demanding that
u0 = 0 andw0 = 0, we obtain the following system

u1t = ∂(−u1xx + 3u2
1+ 3w2

1) (65)

w1t = ∂(−w1xx + 6u1w1) (66)
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which does not coincide with the Hirota–Satsuma equations (21), (22). Moreover we can
transform these equations, to the system of two noninteracting Korteweg–de Vries equations
using

u1 7→ u1+ w1 (67)

w1 7→ u1− w1. (68)

However, we cannot do the same with the supersymmetric level.
It is rather an unexpected result, because our supersymmetrization method involves

supersymmetrizations of the Hirota–Satsuma Lax operator. The observation that, in the
process of the supersymmetrization, in the bosonic limit, we do not obtain the desired
equation, is known in the theory of supersymmetrization of soliton’s equation. It happens
for example in the SUSY Boussinesq equation.

Finally, let us discuss the problem of the existence of integrals of motion in our model.
We succeeded first in constructing three conservation laws, which are

I1 =
∫
U dx dθ1 dθ2 (69)

I3 =
∫
((D1D2U)U + 4

3U
3+ (D1D2W)W − 2W 2U) dx dθ1 dθ2 (70)

I5 =
∫
(16U5+ 40(D1D2U)U

3+ 10(D1D2U)
2U + 30U2

x U − 5(D1D2Uxx)U

−10(D1D2W)W
3− 5(D1D2Wxx)W + 20(D2Wx)(D2W)U

+20(D1Wx)(D1W)U + 50(D2W)(D1W)U
2+ 20WxxWU

+30(D1D2W)
2U − 30(D1D2W)WU

2+ 20W 2
x U

+30W 4U − 3(D1D2U)W
2U − 40W 2U3) dx dθ1 dθ2. (71)

Moreover, we proved the absence of second, fourth and sixth conformal dimensional
integrals of motion in our system. This is an unexpected result. It means that our equations
of motion do not coincide, in the limit whenW = 0, with the SUSY version of the
KdV equation. Indeed, as we saw, the SUSYa = 4 KdV equation possesses odd and
even conformal dimensional integrals of motion. It is interesting to note that in these two
equations we have two different mechanisms of construction of the conserved currents. The
pure SUSYa = 4 KdV equation has two nonequivalent roots which are responsible for the
integrals of motion (see formulae (51), (52)). In the SUSY Hirota–Satsuma case we can
only construct one root of the Lax operator and hence we have even dimensional currents.

5. Concluding remarks

We have constructed the supersymmetric analogue of the Lax operator responsible for the
Hirota–Satsuma equation. Interestingly, this operator does not produce the classical Hirota–
Satsuma equation. Moreover, we saw that it is possible to construct a SUSY system
(38), (39) which contains a Hirota–Satsuma system without any references to the Lax
operator. However, we did not investigate the integrability of this system, because we
could not succeed in constructing the Lax operator, and we did not use any other criteria
of the integrability (for example the Painlevé test). The classical systems which have Lax
formulation are integrable and this is a benefit of the Lax approach. In the search of the
SUSY Lax operator, for our system, we made the strong assumption that it reduces to
the usual SUSY KdV Lax operator. We can drop this assumption, and assume that our
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Lax operator produces the (SUSY) equation which is reduced in the bosonic limit to the
Hirota–Satsuma equation. However, in this case, dificulties with the second Hamiltonian
formulation of such a system appear. On the other hand the first Hamiltonian structure
could appear and it needs further investigation. Note thatN = 2 SUSY Virasoro algebra
is uniquely defined and it strongly relies on the assumption on the structure of the Poisson
tensor (3). In the classical Hirota–Satsuma case, the Poisson tensor (19) is reduced to the
classical Poisson tensor connected with the Virasoro algebra. Hence, in the supersymmetric
case, this assumption is reasonable and therefore our Lax operator should reduce to the
KdV-type Lax operator. For such an operator, we investigated all possibilities in the class
of two superbosonic fields.
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